Bubble reduction
The effect of the Boyle's law (p1xv1 = p2xv2) can be seen in many aspects of HBO. This can be useful for embolic phenomena such as decompression sickness (DCS) or arterial gas embolism (AGE). As the pressure increases, the volume of the bladder decreases. This is also important during decompression of the chamber. When a patient holds their breath, the volume of gas trapped in the lungs increases and can lead to pneumothorax.
Temperature change
Charles' law ([p1xv1] / T1 = [p2xv2] / T2) explains the increase in temperature during compression (increase in pressure) and the decrease in temperature during decompression (reduction in pressure). This can be important when treating children or very sick or intubated patients.
Increased amount of oxygen in the blood
The Henry's law says that the amount of gas dissolved in a liquid corresponds at the partial pressure of this gas on the surface of this liquid. In the compressed chamber, more oxygen can be dissolved in the patient's plasma than outside the pressure chamber.
Increased amount of oxygen in the tissues
Since the blood carries much more oxygen, it can supply the tissues with enormous quantities, especially where it is lacking. Then there are chemical reactions that trigger the healing process. This increased pressure causes oxygen to diffuse into the tissues and thus reaches areas with poor vascularity. The distance at which oxygen can diffuse from the last capillary is calculated with the mathematical diffusion model of Krogh